


Topic 1 - Determinants
Lecture 1
Carrol determinant formula:
detA × = bottom-left-removed × top-right-removed − bottom-right-removed × top-left-removed

Mn×n(F) is a ring and group under addition

GLn(F) is the group of invertible matrices, and is a group under matrix multiplication

Here, the field F is defined as a group under addition (F+) and F× = F ∖ {0} is a group under
multiplication

Cofactor expansion is a strategy for computing the determinant

Lecture 2
The determinant det is the unique function Mn×n(F) → F that is

A

Here,  means that the first and last columns and rows have been removedA

Theorem

det : GLn(F) → F× is a group homomorphism

Move along a row (or column), and for each element, add to the sum
that element × det of matrix found by removing that row and col × (−1)i+j

Formally, detA =
n

∑
i=1

AijCij, where Cij is the cofactor matrix of A, which is found by removing

row i and col j from matrix A.

Cofactor expansion is inefficient to compute, but conceptually and algebraically useful because it
defined the determinant recursively. Thus, proofs about the determinant can inherit the structure
of the cofactor definition; this is particularly suited to proofs by induction.

1. Linear in each row, i.e. for any row, det = c ⋅ det + det

⎡⎢⎣c→a + →b

→r1

⋮

⎤⎥⎦ ⎡⎢⎣ →a

→r1

⋮

⎤⎥⎦ ⎡⎢⎣ →b

→r1

⋮

⎤⎥⎦2. Equals 0 when two rows are equal

3. Maps In ↦ 1



Each of these properties can be shown/proven inductively using cofactor expansion. Uniqueness is
harder to prove

Lecture 3
For A ∈ Mn×n(R), detA ∈ R, where R is a (not necessarily commutative) ring. This follows from the
ring axioms and the cofactor expansion definition

Adjugate formula: For invertible (i.e. detA ≠ 0) A ∈ Mn×n(F), A−1 =
1

detA
Adj(A), where Adj(A)ij is

the (j, i)th cofactor matrix Cji, i.e. Adj(A) = C ⊺

Lecture 4

Proof: (A ⋅ Adj(A))ij =
n

∑
k=1

AikCjk; cofactor expand along jth row of the matrix you get by replacing

the jth row of A with its ith row

So, A ⋅ Adj(A) = detA ⋅ In

For commutative ring R, A ∈ Mn×n(R) has a multiplicative inverse in Mn×n(R) ⟺  detA has inverse
in R → then adjugate formula holds

Proof: (→) If A−1 ∈ Mn×n(R), then 1 = detAA−1 = detAdetA−1, so detA is invertible. (←) If detA is
invertible, proof follows from adjugate formula

Lecture 5

This motivates the useful and well-known identity A−1 =
1

ad − bc
[ ]

We can use this rule to find a particular entry of A−1 without calculating all of it:

A−1 =
1

detA
Adj(A) implies that A−1

ij =
1

detA
Adjij =

1
detA

Cji

d −b

−c a

i = j → matrix is just A → detA

i ≠ j → matrix has two identical rows → detA = 0

R is a field → any member (including detA) is invertible by defn

R = Z → invertible elements are ±1

R = Zn → invertible elements are any ±m that doesn't share factors with n



We can check if a matrix A is invertible in field F by checking if detA is invertible in F. E.g. [ ] is

not invertible in Z12 since −2 = det [ ] ∣ 12, but it is invertible in Z9 since −2 ∤ 9.

Cramer's Rule: For A→x = →b (where A is invertible), xi =
det

~
A

detA
, where ~

A is the matrix formed by

replacing the ith column of A with →b

Lecture 6
Permutation: invertible function σ : {1, 2, …n} → {1, 2, …n}, i.e. maps from self to self uniquely

Symmetric Group (denoted Sn or Sym(n)): set of all permutations (functions) on set of size n

Symmetric groups are not abelian (i.e. not commutative)

Inverses of symmetric groups can be found by flipping the rows, since the "inverse" is just "undoing"
the permutation by "moving everything back to where it was"

Sn trivially has n! elements

Permutation formula for determinant: detA = ∑
σ∈Sn

[±1] ⋅ A1,σ(1)A2,σ(2), …An,σ(n), where Ai,j is the

(i, j)th entry of A ∈ Mn×n(F)

Permutation matrix: For standard basis vectors →e1 … →en, P(σ) = [ ]

1 2
3 4

1 2
3 4

For Zn, m is invertible in Zn if and only if m does not share any factors with n.

Polynomials can only be invertible if ring/field/etc over which they are defined have the special 0
property; only constant terms can be invertible

Proof: →x = A−1→b =
1

detA
Adj(A)→b ⟹ xi =

1
detA

n

∑
j=1

Adj(A)ijbj =
1

detA

n

∑
j=1

Cjibj

Expanding the cofactor formula for det (A ∈ M3×3(F)), we get 6 terms, which are all the
permutations of having one of each row and column in the indices

Group operation is function composition σ1 ∘ σ2 = σ1(σ2(i)); this always leads to another
permutation, since this is equivalent to permuting the set twice in succession

Alternate representation: [ ] represents σ : a1 ↦ b1, … an ↦ bn
a1 … an

b1 … bn

This is derived from the cofactor formula

The "sign" term comes from detP(σ); these must be ∈ {±1} since they are invertible

→eσ(1) →eσ(1) … →eσ(n)



Leibniz formula for determinant detA = ∑
σ∈Sn

detP(σ) ⋅ A1,σ(1)A2,σ(2), …An,σ(n)

Lecture 7
The transposition operator τij represents the i ↔ j row swap; the composition τi1j1 ∘ τi2j2 ∘ ⋯ ∘ τinjn

represents successive swaps.

Transpositions are the building blocks of Sn

Determinant test: →v1 … →vn ∈ Fn form a basis ⟺  det [ ] ≠ 0 (⟺  →v1 … →vn are linearly
independent) (⟺  span( →v1 … →vn) = V )

Lecture 8
Geometric properties of the determinant: measure of the "parallelogram" defined by sides →v1 … →vn in

Rn is det  (where the vectors →v1 … →vn form the rows)

The linear transformation T : Rn → Rn increases area by a factor of detT

I.e. P(σ) for σ = [ ] is 

Multiplication acts like composition: P(σ)P(σ′) = P(σ ∘ σ′). This is because, formally, permutation
matrices are a subgroup of GL(Z) and P : Sn → P(σn) is a group homomorphism .

1 2 3
2 3 1

⎡⎢⎣0 0 1
1 0 0
0 1 0

⎤⎥⎦detP(σ) is the sign of σ and is the number of row swaps for P(σ) → In

Aside: infinite-loop recursive determinant definition??

→v1 … →vn

This instance of the "make your life easy theorem" is great for checking if members of a vector
space form a basis
Coordinate vectors are used to calculate the determinant

⎡⎢⎣ →v1

⋮

→vn

⎤⎥⎦



Topic 2 - Equivalence Classes and Quotient Spaces
Lecture 9
∼ is an equivalence relation if it satisfies

E.g. m ∼ n ⟺ 7 ∣ (m − n) is an equivalence relation

Each ∼ splits the domain over which it is defined into equivalence classes –a. These sets partition
(i.e. fully cover in aggregate) the domain D, and are defined as the groups of elements that are all
equivalent to each other

Inversely, every possible partition has an associated equivalence relation, defined as a ∼ b if a and b
are in the same partition.

Lecture 10
For set X, X/ ∼ is the partition of X by ∼, i.e. X is partitioned into the equivalence classes defined by
∼ for elements in X

We have a vector space structure for equivalence classes over vector spaces; the equivalence
classes inherit the structure of the domain.

1. Reflexivity: a ∼ a

2. Symmetry: a ∼ b ⟹ b ∼ a

3. Transitivity: a ∼ b ∧ b ∼ c ⟹ a ∼ c

Clearly, each element has only one such class

For m ∼ n ⟺ 7 ∣ (m − n), the equivalence classes are {–
1 …

–
7}

Aside: what structure is implied here?

x is the equivalence class that contains x ∈ X–

E.g. Z/m ∼ n ⟺ m ≡ n mod 3 is {–
0,

–
1,

–
2}; note that –0 =

–
3 =

–
6 …

E.g. in R3, (x, y, z) ∼ (x′, y′, z′) ⟺ z = z′, R/ ∼ has equivalence classes
(0, 0, z) = {(x, y, z) : ∀x, y ∈ R} for any z ∈ R. Note that the basis for R/ ∼ is (0, 0, 1). Essentially,
we only care about z, so x and y are free to be any value, since they will be equivalent. Thus, the
equivalence classes depends only on z, thus the set of equivalence classes is isomorphic to R.

–

Vectors are equivalence classes

Addition and scaling are closed (and well-defined)



Lecture 11

Equivalence classes are also known as cosets

Quotient of V  by S: V /S, defined by V / ∼ where for a, b ∈ V , a ∼ b ⟺ a − b ∈ S

Lecture 12
For set X, equivalence relation ∼, and function f : X → X, f is well-defined on X/ ∼ iff
x ∼ y ⟹ f(x) = f(y), i.e. two equivalence elements of X must be mapped to the same value by f

Aside: This gives insight into what a quotient space actually is. It is the "complimentary" subspace you
get when "forcing the structure of S onto V ". This is why vectors that are different in S are the
equivalence classes (V /S) in V , by the definition of the equivalence relation. V /S is the space that

This structure can also be a field, ring, etc. if the domain has that structure

Quotient Theorem 1

Let V  be a vector space over F, and S ⊆ V . Define →u ∼ →v ⟺ →u − →v ∈ S. Then

Informally, V / ∼ "plays nice" iff ∼ is an equivalence relation, meaning S is a subgraoup, etc.

1. ∼ is an equivalence equivalence relation if and only if S is a group under vector addition,
i.e. is closed under +, →0 ∈ S, and →u ∈ S ⟺ −→u ∈ S

2. Define →u +
–
→v = →u + →v and k→u = k→u. Then V / ∼ is a vector space if and only if S is a

subspace of V

––––

Equivalence classes are thusly defined as –→v = →v + S, i.e. for any →s ∈ S

V /S is the set of equivalence classes induced on V  by ∼ (S is like a parameter)
E.g. Zn is defined as the quotient Z/ {0, 1, … ,n − 1}.

Quotient Theorem 2

Let V  be a finite-dimensional vector space and S be a subspace. Then V /S has dimension
dimV − dimS.

A basis can be found for V /S by finding a basis for S, then adding necessary vectors to make it
a basis for V . The vectors that need to be added are the basis for V /S



you can use to "build" V  from just S; each equivalence class in V /S "contains" the structure of S. The
basis construction is the best way to give insight into what V /S.

Aside: a semantically better notation for V /S might be V − S, since this makes the nature of the
relationship between V , S, and V /S more clear

Lecture 13
E.g. if S is the xy plane in R3, then the equivalence classes for R3/S are the planes parallel to the xy
plane

Lecture 14

We know this is linear since the equivalence relation for S is well-defined, i.e.

T (a→u + →v) = a→u + →v = ⋯ = a→u +
–
→v = aT (→u) + T (→v)

Aside: I think the number of equivalence classes of V /S are #(V /S) = #V /#S, perhaps this is why
the notation is is V /S?

E.g. Let S be all A ∈ Mn×n(F) where A ∼ A⊺, i.e. for A = [ ], b = c. Clearly a basis for S is

{[ ], [ ], [ ]}, since the transpose "flips" the matrix along the tl-br diagonal, so any

element there can be the same. To get a full basis for Mn×n(F), we can add another matrix [ ]

(there are other options). So, the basis for Mn×n(F)/S is {[ ]}, and so the equivalence classes

are [ ] for all a ∈ F. We also have from the basis sizes dimMn×n(F)/S = dimMn×n(F) − dimS

Lecture 15
We can think of →u +

–
→v = →u + →v and k→u = k→u in two ways

Basically, the "essence" of S is removed from V  to form V /S.

The Zn example is another good motivator of understanding

Quotient Theorem 3

We have linear map T : V → V /S defined by T (→v) =
–
→v.

––

a b

c d
1 0

0 0

0 0

0 1

0 1

1 0
0 1

0 0
0 1

0 0
–

0 a

0 0

––––

1. A linear transformation T  defined by T : V → V /S and T : →v ↦
–
→v



Sum vector space: V ⊕ W = {(→v, →w)}, i.e. combining the vectors element-wise

S = →0 ⊕ W  is a subspace of V ⊕ W , so V ⊕ W/(→0 ⊕ W) ≅V  has equivalence classes (→v, →w) = (→v, 0)

So V /S could be called "direct difference" V ⊖ S, since (V ⊕ W) ⊖ (→0 ⊕ W) ≅V

T  has image V /S (onto) and kernel S

2. (→u + S) + (→v + S) = (→u + →v) + (S + S) = →u + →v + S (since S is closed under addition)

––

Quotient Kernel Theorem

Let T : V → W  be linear. Then Image(T ) ≅V / kerT , implying dim Image(T ) = dimV − dim kerT

If dimV = dimW , dim kerT = 0 and Image(T ) has dimension v, so we have v = v − 0.

E.g. if T  maps down a dimension, then kerT  must be 1 and Image(T ) = v − 1, etc

Quotient Theorem 1 for Groups

Let G be a group, and S ⊆ G. Define relation g ∼ g′ as g−1g′ ∈ S.

1. ∼ is an equivalence relation if and only if S is a subgroup

2. Let S be a subgroup. Define –gh = gh. This is well-defined and defined a group structure
G/ ∼ if and only if S satisfies gsg−1 ∈ S for all g ∈ G, s ∈ S → sub subgroups are normal
subgroups

––



Topic 3 - Eigenstuff
Lecture 17
Let A ∈ Mn×n(F). A number λ is an eigenvalue of A with eigenvector →v if A→v = λ→v; the set {λ, →v} is
an eigenpair.

Eigenstuff is widely applicable:

We have A→v = λ→v ⟺ (A − λI)→v = →0. So, Null(A − λI) is the set (and subspace) of eigenvectors
corresponding to eigenvalue λ

Thus, to find all eigenvalues λ of A, we solve the polynomial det(A − λI) = 0 to find all eigenvalues λ,
then find the null space Null(A − λI) to find all eigenvectors →v.

Lecture 18

Essentially, eigenvector is an input to the transformation defined by A where the transformation
simply scales the vector →v, namely by λ

{0, →0} is always trivially an eigenpair

Markov processes: the eigenvalues of a transition matrix representing a Markov process are the
(probabilistic) eventual state(s) of the system

Aside: for Markov processes, all eigenvalues are 1 (because the process doesn't "fizzle
out"), and the determinant encodes how fast the eventual state is reached

Quantum mechanics: energy levels of the hydrogen atom are eigenvalues of a ∞ × ∞ matrix

Dynamical systems: eigenpairs encode the steady state of the system

If A − λI is invertible, then →v = →0 is the only solution for that given λ (since otherwise, →v would be
a linear combination of the rows of A − λI summing to →0, implying non-invertibility). This is
trivially the case for any λ, so this doesn't tell us anything, so we search for nonzero eigenvectors
→v ≠ →0.

So, if we have solutions with →v ≠ →0 eigenvectors, A − λI can't be invertible, so det(A − λI) = 0

Aside: this is connected to the characteristic polynomial by the relation (A − λI)→v = →0 between
eigenvalues and eigenvectors. detA − λI finds the values of λ that make this equation 0
(eigenvalues), whereas Null(A − λI) finds the corresponding values of →v that make this equation
→0 (eigenvectors).

Aside: this means that the basis Null(A − λI) is also a basis for the eigenspace, so they have
the same dimension, i.e. dim Null(A − λI) = dimEλ



The set of eigenvectors of A corresponding to eigenvalue λ (denoted Eλ) is a subspace, namely the
eigenspace of λ. We know that Eλ = Null(A − λI).

The characteristic polynomial CA(λ) of A is det(A − λI) = 0; its roots are the eigenvalues of A

We can diagonalize A if we can find a diagonal matrix D and invertible matrix P  such that
P −1AP = D ⟺ PDP −1 = A.

Lecture 19
The algebraic multiplicity aλ of eigenvalue λ is its multiplicity as a root of the characteristic
polynomial det(A − λI) = 0

The geometric multiplicity gλ of eigenvalue λ is defined as dimEλi
= dim Null(A − λI), i.e. the

number of vectors that form a basis for the eigenspace Eλi

For any eigenvalue of any matrix, it is true that aλi
≥ bλi

.

Diagonalizability Criterion: If some characteristic polynomial for matrix A factors completely into
linear factors, then A is diagonalizable if and only if the geometric multiplicity and the algebraic
multiplicity are equal

We always have ∑
λ

aλ = n (i.e. detA − λI has degree n, so an n × n matrix has n eigenvalues), but

this isn't always the case for gλi .

Proof: We know →0 is trivially an eigenvector for any λ; closure under addition and scalar
multiplication follow from the definition A→v = λ→v

We have P −1AP = D ⟺ AP = PD, so for diagonal D =  and

P = [ ], we get A →vi = di →vi. So, the diagonal entries of D are the eigenvalues of A, and
the column vector entries of P  are the corresponding eigenvectors of A

⎡⎢⎣d1 … 0

⋮ ⋱ ⋮
0 … dn

⎤⎥⎦→v1 … →vn

Eigenvectors for different eigenvalues are linearly independent, since if this weren't the case,
we've have A→v = λ1→v and A →w = λ2 →w where →w = c→v, so Ac→v = λ2c→v ⟹  A→v = λ2→v by dividing by
c, contradicting λ1 ≠ λ2

If A is diagonalizable, i.e. A = PDP −1, then A and D have the same determinant (follows from
the structure of A = PDP −1), so detA − λI = detD − λI = (λ1 − λ)(λ2 − λ) … (λn − λ), where
each (λi − λ) happens gλi

 times. This represents the algebraic multiplicity exactly (since it's the
characteristic polynomial), so the two are equal



Corollary: if all the roots of a characteristic polynomial are distinct, the matrix is diagonalizable,
implying almost all matrices are diagonalizable

Lecture 20
Some matrices may not be diagonalizable over their own field. In particular, there exist matrices in R

that can only be diagonalized in C, e.g. A = [ ] has characteristic polynomial CA(λ) = λ2 + 1,

which has solutions {i, −i} ⊄ R, meaning A is diagonalizable over C, but not R.

We note that for matrix A in R with eigenpair {λ, →v}, we have A→v = λ→v ⟺ A→v = λ→v

⟺ A
–
→v = λ

–
→v ⟺ A

–
→v = λ

–
→v (since A is real), meaning {λ,

–
→v} is also an eigenpair of A.

The characteristic polynomial can be used for the following sanity checks:

We have  since detA = CA(0) = a0, which is the product of eigenvalues as shown in 3)

Diagonalizability is important because, for diagonalizable A, we have An = PDnP −1 where

D = , since D is diagonal.

We can also define √A as P√DP −1, where D = , i.e. Aq is defined for q ∈ Q

E.g. [ ] has λ = {3}, so aλ = 2. Eλ = Null [ ], dimEλ = 2. However, [ ] also has

λ = {3}, so aλ = 2, but Eλ = Null [ ], dimEλ = 1.

3 0
0 3

0 0
0 0

3 1
0 3

0 0
1 0

0 1
−1 0

––

––––

Aside: this is related to the conjugate root theorem, since CA(λ) is a polynomial in R[x]

1. CA is of degree n (for An×n)
2. The leading coefficient an = (−1)n, since CA = (λ − λi)n for various i

3. The constant term a0 is the product of A's eigenvalues (since the constant term must be divisible
by all the factors, which are all the eigenvalues)

4. an−1 = (−1)n−1Trace(A) = (−1)n−1
n

∑
i=0

λi (follows from expanding polynomial multiplication)

detA =
n

∏
i=1

λi

⎡⎢⎣λn
1 … 0

⋮ ⋱ ⋮
0 … λn

n

⎤⎥⎦Proof: An = (PDP −1) … (PDP −1) = PD(PP −1)D…DP −1 = PDP −1

So, since for A → An, D → Dn and P ,P −1 stay the same, by their definitions with respect to
eigenvalues and eigenvectors, we see that A→v = λ→v ⟹ An

→v = λn
→v

⎡⎢⎣√d1 … 0

⋮ ⋱ ⋮

0 … √dn

⎤⎥⎦



Lecture 21

Since An is defined for n ∈ N, we can define the exponential function eA or expA as 
∞

∑
n=1

An

n!

Aside: Recall that d
dx

 is a linear operator (linear map on a space of differentiable functions like R[x])
that can be described by matrix A. So, we can define another linear operator eA = e

d
dx  sends "vector"

f(x) to 
∞

∑
n=0

f (n)(x)
n!

. This is the taylor expansion of f(x + 1), so the transformation TA described by

matrix A maps f(x) ↦ f(x + 1); it is the translation operator

If A is diagonalizable and all of A's eigenvalues satisfy |λ| < 1, then An → O for n → ∞

Let Fn define the nth Fibonacci number, and define →vn = [ ]. Then

→vn+1 = [ ] = [ ] = [ ] [ ] = [ ] →vn, so it follows that →vn = [ ]
n

[ ] since

[ ] are the initial conditions of the Fibonacci series. [ ] has eigenvalues 1 ± √5
2

= {ϕ, 1 − ϕ}.

Since we can find the closed form expression of Fn (component of) →vn = [ ]
n

[ ], where we find

[ ]
n

 by diagonalizing it; Fn =
1

√5
(1 + √5)n −

1

√5
(1 − √5)n

We have eA =
∞

∑
n=1

PDnP −1

n!
= P (

∞

∑
n=0

Dn

n!
)P −1, where 

∞

∑
n=0

Dn

n!
 has (i, i)th entry 

(Dii)n

n!

Aside: this seems to imply that any function that can be approximated with a Taylor series (i.e.
any n-times differentiable real-valued function) can be defined for matrices, since the operations
that form power series (+ and ⋅) are defined over vector spaces

Aside: obviously this works for polynomials because they form a vector space, but can this work
over spaces that aren't vector spaces?

Aside: is the entire space of functions 1) a thing that makes sense 2) a vector space?

Aside: what class of things does this "translation operator" belong to? What other operators exist
in this class?

Aside: the way we can define a function/operator using a series (like eA), compose it with another
function/operator (like d

dx
), then get back a taylor series we can interpret as a different operator

seems like a powerful pattern of derivation

Fn+1

Fn

Fn+2

Fn+1

Fn+1 + Fn

Fn+1

1 1
1 0

Fn+1

Fn

1 1
1 0

1 1
1 0

1
1

1
1

1 1
1 0

1 1
1 0

1
1

1 1
1 0

The eigenvalue ϕ relates to the fact that the ratio of successive Fibonacci terms approaches ϕ.

Aside: the ± in 
1 ± √5

2
 seems to have an analog to complex conjugation trick for

diagonalization, which is given as true. When we have two fields (here, Q ⊂ R), there are
symmetries we can exploit

Aside: encoding recurrence relations as vector-matrix multiplications (a case of the broader
encoding functions as matrix multiplications) → eigenvalue (steady state) and possibly



We found that since a matrix A→v represents a transformation (i.e. a function/operator) applied to →v by
vector multiplication, An

→v corresponds to it being repeated (composed) n times

Aside: since every function can be described perfectly (in the limit case) by a Taylor polynomial (within
the radius of convergence) and a series can be represented as a series, and thus an ∞-dimensional
vector, can every function be represented as a vector? What do linear transformations between these
vectors correspond to? presumably non-linear functions? can every operator be described this way?

determinant have useful interpretations

Aside: eigenstuff somehow encodes self-relation limits, i.e. L =
1

1 + L
 for ϕ.

Aside: composition ∘ and multiplication ⋅ seem to be equivalent/isomorphic quite often in linear
algebra. Why? And between what other structures is this isomorphism defined?



Topic 4 - Bases
based!

Lecture 22
Change of variables is a common technique in all of math, where a new variable that is more
convenient to use is defined as a function of existing variables in an expression. When the variables
we change define a coordinate system (i.e. x, y, etc.), this is a coordinate change; the coordinate
change in linear algebra is a change of basis, since a basis is (like) a coordinate system.

Recall that [T (→v)]β′ = [T ]β′←β[→v]β (change of basis for transformation) and
[S ∘ T ]β′′←β = [S]β′′−β[T ]β′−β (change-of-basis composition) for bases β of V , β′ of W , β′′ of U , and
T : V → W ,S : W → U

Pβ′←β = [IdV (→v)]β′←β is the change of basis matrix from β to β′. Here, Id : →v ↦ →v is the identity
transformation for vector space V  Id : →v ↦ →v, where TId = I

The change of basis matrix can change the basis of a vector →v (here, from β to β′):
[→v]β′ = [Id(→v)]β′ = [Id]β′←β[→v]β = Pβ′←β[→v]β. So, 

Change of basis matrices P  reverse under inversion, i.e. (Pβ′←β)−1 = Pβ←β′

Let T : V → W , and βV ,β′
V

 be bases of V , and βW ,β′
W

 be bases of W . Then
[T ]β′

W
←β′

V
= [IdW ∘ T ∘ IdV ]β′

W
←β′

V
= [IdW ]β′

W
←β′

V
[T ]βW←βV

[IdV ]β′
V

←βV
= Pβ′

W
←β′

V
[T ]βW←βV

Pβ′
V

←βV

Note: so far, we've just been treating matrices as immutable things with one representation. But,
bases add an "extra dimension" to this, where matrices are represented differently in different bases.
So far, we've essentially been assuming matrices are expressed in the standard basis and have
omitted the notation.

Note: the concept of bases (and converting between different bases) for vectors is similar to the
concept of expressing natural numbers in a base other than 10. In each, the underlying system
describing how to calculate the "pure" value changes, but the value itself doesn't.

This implies that Pβ′←β = [ →e1β′ , … , →enβ′ ] for standard basis vectors →e1 … →en

If β = β′, Pβ′←β will be the identity matrix; for β ≠ β′, it won't be

[→v]β′ = Pβ′←β[→v]β

This follows from I = [Id]β′←β = [Id ∘ Id]β′←β = [Id]β←β′ [Id]β′←β = Pβ←β′Pβ′←β

I.e. change of basis "chains" through composition

When V = W , i.e. T : V → V , then we get [T ]β←β′ = (Pβ′←β)−1[T ]β←βPβ←β′
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E.g. take V = F[x],D = d
dx

,β = (x, 1),β′ = (1, 2x). Then, we have [D]β←β = [ ] (i.e. the definition

of D), and [D]β′←β′ = [ ] (since the order of basis vectors (and thus cols) is swapped, and we

have 2x instead of x). We find by inspection that Pβ←β′ = [ ], so Pβ′←β = (Pβ←β′)−1 = [ ], we

have [ ] [ ] [ ] = [ ] as desired

n × n matrices A and B are similar iff there exists invertible matrix P  such that B = P −1AP

[T ]β′←β′ = (Pβ′←β)−1[T ]β←βPβ←β′ , shows that for bases β and β′, [T ]β′←β′  and [T ]β←β are similar.
Conversely, given matrix B similar to [T ]β←β, we can find basis β′ such that [T ]β′←β′ = B

Lecture 24

If we have D = P −1AP  for diagonal A and D = , we can choose P  to be a permutation

matrix (since A and D are both diagonal). Then, A will be D = , where π(n) is the

permutation described by P .

Every matrix, even non-diagonalizable ones, is similar to an upper-triangular matrix, i.e. every matrix
where the entry below the diagonal is 0.

Every non-diagonalizable 2 × 2 matrix is in the form [ ] for b ≠ 0 (since if the diagonal entries

(eigenvalues) were different, they'd be distinct → diagonalizable). With P = [ ], this is similar to

[ ].

0 0
1 0

0 2
0 0

0 2
1 0

0 1
1
2 0

0 1
1
2 0

0 0
1 0

0 2
1 0

0 2
0 0

Similarity is an equivalence relation, i.e. the set of all n × n matrices can be partitioned into sets
of mutually similar matrices called similarity classes
Aside: diagonalizing can be seen as finding a "nice" representative of a matrix in the same
similarity class

⎡⎢⎣λ1 … 0

⋮ ⋱ ⋮
0 … λn

⎤⎥⎦⎡⎢⎣λπ(1) … 0

⋮ ⋱ ⋮
0 … λπ(n)

⎤⎥⎦So, if a diagonal matrix is in a similarity class, then any permutation of its diagonal entries is also
in that similarity class

a b

0 a
1 0

0 1
b

a 1
0 a



Topic 5 - Jordanstuff and Generalized Eigenstuff
Lecture 24

The Jordan block of λ, denoted Jn(λ), is the n × n matrix equivalent of , where all the

diagonal entries are λ and the entries directly above them are 1 (note that this matrix is upper
triangular)

We defined the direct sum/block sum A ⊕ B as the "composite" matrix [ ], where On is the

n × n zero matrix and [A], [B] are the entries of A and B.

Lecture 25
For n × n matrices A, A′ and m × m matrices B, B′, the direct sum is "distributive":

The Jordan block Jm(λ) has characteristic polynomial (λ − x)m, so it has one eigenvalue (namely,
x = λ) with algebraic multiplicity m and geometric multiplicity 1

Lecture 26

⎡⎢⎣λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ

⎤⎥⎦[A] On

On [B]

E.g. [ ] ⊕ [ ] = [ ] = I2, [ ] ⊕ [ ] =1 1
1 0

0 1

a b

c d

e f

g h

⎡⎢⎣a b 0 0

c d 0 0

0 0 e f

0 0 g h

⎤⎥⎦(A ⊕ B) + (A′ ⊕ B′) = (A + A′) ⊕ (B + B′)

(A ⊕ B) ⋅ (A′ ⊕ B′) = (AA′) ⊕ (BB′)

Aside: what property is this? distributivity? structure looks kinda like De Morgan's laws. What
algebra is at work here?

The geometric multiplicity follows from the fact that Jm(ℓ) − ℓI is the n × n version of

, whose null space clearly has one dimension (corresponding to the first column →0)

⎡⎢⎣0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎦Jordan Canonical Form Theorem



A matrix A is diagonalizable iff all mi,j = 1, i.e. if all the Jordan blocks are as small as possible, and
JCF of A is a (the) diagonal matrix.

If A is a square matrix, then its similarity class has a matrix of the form
(Jm1,1(λ1) ⊕ Jm1,2(λ1) ⊕ ⋯ ⊕ Jm1,r(λ1)) ⊕ (Jm2,1(λ2) ⊕ ⋯ ⊕ Jm2,r(λ2)) ⊕ ⋯ ⊕

(Jmk,1
(λj) ⊕ ⋯ ⊕ Jmj,r

(λk)) where λ1 …λk are the unique eigenvalues of A; this is the Jordan
canonical form of A.

λi has algebraic multiplicity mi,1 + ⋯ + mi,ri  and geometric multiplicity ri
Jm(λ) is the m × m Jordan block for λ

Informally, every square matrix is similar to a direct sum of Jordan blocks, particularly of those
built from the matrix's eigenvalues

JCF replaces the diagonal matrix when A is not diagonalizable

Essentially, the JCF is any form where the matrix is created from Jordan blocks of its
eigenvalues. If an eigenvalue is repeated, any partition of these into different Jordan blocks is
allowed (see assignment 8 q2), but the "canonical" one is the one with eigenvalues in increasing
order.

If we require that mi,1 ≥ mi,2 ≥ …, then the JCF is unique (i.e. it is unique up to the ordering of
eigenvalues).

Minimal Polynomial

The minimal polynomial mA(x) of matrix A is the unique* polynomial with the following
properties

1. mA is monic, i.e. its leading coefficient is 1
2. MA(A) = O

3. mA is has the smallest degree possible while satisfying both 1) and 2)

If A is diagonal with entries λ1, λ2, etc, then mA(x) = (x − λ1)(x − λ2) …, where multiplicity is
ignored (since the extra multiplicity of a factor doesn't change whether mA has a zero there).

So, the degree of the minimal polynomial is that of the characteristic polynomial minus the
number of multiplicity repeats. Aside: does this imply some sort of quotient structure?

If A is Jordan block Jm(λ), then mA(x) = (x − λ)m

mA⊕B(x) = mA(x)mB(x), i.e. the minimal polynomial of a direct sum of matrices is the product of
the minimal polynomials of the matrices.

"Minimal Polynomial Theorem"
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The proof for the minimal polynomial theorem is found here. The proofs for each point can be
sketched as follows

Lecture 28
Since addition and scaling "distribute" over direct summation ⊕, "taking a polynomial" does as well,
i.e. p(A ⊕ B) = p(A) ⊕ p(B) for polynomial p.

For polynomials p(x), q(x) and matrix A, p(A)q(A) = q(A)p(A), i.e. multiplication of matrix-polynomial
compositions is commutative

If A is an n × n matrix, we have

1. The minimal polynomial mA(x) of A exists an is unique
2. For any p(x) where p(A) = 0, then mA(x) divides p(x). So, p(x) = mA(x)q(x)

3. Ad−1,Ad−2, … ,A, I are linearly independent in Mn×n(F) where mA(x) has degree d.
However, Ad,Ad−1, … are not linearly independent (found by plugging A into mA)

4. Any matrix similar to A has the same minimal polynomial

1. Somewhat trivial

2. We must have p(x) = mA(x)q(x) + r(x) (number theory!), plugging in A turns p(x) and mA(x) to
0, deriving the point

3. Proof straightforward from definition of linear dependence (also shows uniqueness for 1.)

4. Plug in B = P −1AP  into the polynomial form of mA(x), P −1 and Ps "telescope" to cancel

Cayley-Hamilton Theorem

For n × n matrix A with characteristic polynomial CA(λ), then CA(A) = O

Proof sketch: Because plugging a Jordan block Jm(λ) into the characteristic polynomial CB of a
matrix B in JCF with λ as an eigenvalue is 0 (proof here, follows from the structure of a Jordan
block), CB(B) is the direct sum of 0-matrices, i.e. is O. Since any matrix A with JCF B has the
same characteristic polynomial (because A and B must be similar), CA(A) = O for any matrix A.

This is significant because ◊[AB ≠ BA] for matrices in general
The proof follows from inheriting commutativity from the "summation" expression of a polynomial,
i.e. that switching the order of the sums adds the same polynomial terms in a different order



The generalized eigenspace GEλ of matrix A and arbitrary (existentially quantified) number λ ∈ F is
defined as the space of →v where (A − λI)ℓ

→v = →0 for some ℓ ∈ N.

Lecture 29
The proof that GEλ is a subspace is sketched as follows:

For any matrix A over field F with characteristic polynomial (λ1 − x)m1(λ2 − x)m2 … (λk − x)mk ,
GEλ1 ⊕ GEλ2 ⊕ ⋯ ⊕ GEλk = Fn

Lecture 30
If a matrix N  consists of a diagonal set of 1s (after the main diagonal of the matrix, like Jn(λ) − λI),
then N 2 is a diagonal set of 1s on the next diagonal, N 3 on the one after that, etc. until N n = O.

So, GEλ(A) =
∞

⋃
ℓ=0

Null((A − λI)ℓ)

GEλ(A) is a subspace of Fn that trivially contains the "regular" eigenspace Eλ(A), which
corresponds to ℓ = 1, i.e. Eλ(A) ⊆ GEλ(A)

1. Nonempty: clearly →0 ∈ GEλ

2. Closure under +: whichever →u, →v has the lowest corresponding ℓ is in the generalized eigenspace
of the other; closure is inherited because GEλ is a null space

3. Closure under ⋅: inherited directly from the null space definition as well

So, any →v ∈ Fn can be written as a sum of vectors from generalized eigenspaces, i.e.

∀→v ∈ Fn, →v =
n

∑
i=1

→vi for  →vi ∈ GEλi

Also, if βi is a basis of GEλi
, then β =

n

⋃
i=1

βi will be a basis for Fn

Finally, if P  is a change of basis matrix from β to the standard matrix of a transformation T , then
P −1AP  will be a direct sum of matrices, one for each GEλi

The basis for the null space of some N k are the first k vectors of the standard basis, i.e. the ones
corresponding to 0-columns in N k

Note that matrices of the form Jm(λ) − λI are of this form
So, Eλ = Null(N) ⊂ Null(N 2) ⊂ ⋯ ⊂ Null(N n) = GEλ

Finding the JCF of a matrix ("dots" method)

For a matrix A, we find the characteristic polynomial CA(λ) and factor it to find eigenvalues
λ1 …λk (factoring may need to include C). For each eigenvalue λ



Since the JCF J of A is similar to A, we have A = P −1JP . The columns of P  are formed from the
vectors that need to be added to the basis of Null((A − λI)n) to form Null((A − λI)n+1)

If →v1, →v2, … are columns in P  that correspond to the same eigenvalue, then we must have →vn = N →vn+1

where N = Jn(λ) − λI

The vertical groupings of dots correspond to the Jordan blocks that correspond to a given λ. So,
the JCF of A is the direct sum of all of the Jordan blocks for all of the eigenvalues.

Compute dim(A − λI), dim((A − λI)2), … , dim((A − λI)ma) where ma is the algebraic
multiplicity of λ
Draw ma dots in a (horizontal) row

For each dot (say n), write dim((A − λI)n+1) − dim((A − λI)n) dots in a horizontal row
under it (vertically). So, the first dot will have dim((A − λI)2) − dim((A − λI)1) dots under it

More formally, the columns of P  are the bases of the corresponding quotient space
Null((A − λI)n+1)/Null((A − λI)n) for eigenvalue λ and n < maλ

So if this difference is a, then the basis for that "direct difference" (quotient) has a vectors (and
thus a columns in P ), and the corresponding Jordan block contributing to the JCF is a × a

For T = TJn(π) is the linear transformation described by T (→v) = Jn(π)→v. Let basis
β = { →v1, →v2, … , →vn}. We can show that [T ]β←β is Jn(π)



Topic 6 - Inner Products and Inner Proudct Spaces
Lecture 31

For Rn, ⟨→u, →v⟩ =
n

∑
i=1

uivi is a common inner product known as the dot product, denoted →u ⋅ →v

For vector →v, we define its length (or norm) as √⟨→v, →v⟩, denoted ∥→v∥

We can derive the following from the inner product definition

We have the following examples and non-examples of inner products for other domains

Inner Product

For vector space V  over R, the pairing ⟨→u, →v⟩ is an inner product if it has the following properties

1. Symmetry: ⟨→u, →v⟩ = ⟨→v, →u⟩

2. Bilinearity: ⟨→u, a→v + b →w⟩ = a⟨→u, →v⟩+ b⟨→u, →w⟩

This can be generalized (using symmetry) to apply to both arguments

3. Positivity: ⟨→v, →v⟩ > 0 for all nonzero →v

Inner Product Space

A vector space V  with inner product ⟨→u, →v⟩ form an inner product space

E.g. for V = R2, the dot product is ⟨→u, →v⟩ = u1v1 + u2v2.

Recall the norm of a vector

E.g. For the above example, we find by the pythagorean theorem that
⟨→v, →v⟩ = v1v1 + v2v2 = v1

2 + v2
2 is the squared length (or euclidean distance) of →v

Linearity of the first argument: ⟨a→u + b→v, →w⟩ = a⟨→u, →w⟩+ b⟨→v, →w⟩ from symmetry and bilinearity

⟨→0, →v⟩ = ⟨→v, →0⟩ = 0 for all →v

V = Mn×n has an inner product ⟨A,B⟩ = Tr(AB⊤), where Tr is the trace of the matrix

V = R[x]2 has an inner product ⟨p(x), q(x)⟩ = ∫
1

0
p(x)q(x) dx

V = C has inner product ⟨→u, →v⟩ = u1v1 + u2v2, where –z is the complex conjugate––



The Lecture notes have an example for determining ∥→u + →v∥ given the inner product definition, ∥→u∥
and ∥→v∥. Generally, this is done by expanding (using bilinearity) and possibly using symmetry to
match.

Lecture 32

The angle α between vectors →v, →u in inner space V  is the unique 0 ≤ α ≤ π such that cosα =
⟨→u, →v⟩

∥→u∥∥→v∥

Vectors →u, →v are parallel if ⟨→u, →v⟩ = ∥→u∥∥→v∥ (i.e. α = 0) and orthogonal if ⟨→u, →v⟩ = 0 (i.e. α =
π

2
)

Aside: for the dot product in R2 (inner space), in polar coordinates, we get →u = [ ] and

→v = [ ], so →u ⋅ →v = ⋯ = ∥→u∥∥→v∥ cos(φ − θ). This is where this definition of the dot product

comes from, and implies that the dot product measures how close the angles of vectors are.

A basis β = (→b1,→b1, … ,→bn) is an orthogonal basis if ⟨→bi,→bj⟩ = 0 for all i ≠ j

⟨→u, →v⟩ = u1v1 + u2v2 violates positivity over C, since ⟨[ ], [ ]⟩ = −1 < 0
i

0
i

0

Non-example: V = R
4 with "inner product" ⟨→u, →v⟩ = u1v1 + u2v2 + u3v3 − c2u4v4 violates positivity.

This is used in Einstein's theory of relativity; c is the speed of light

Cauchy-Schwarz Inequality

Let V  and ⟨→u, →v⟩ be an inner product space. The Cauchy-Schwarz inequality states that
−∥→u∥∥→v∥ ≥ ⟨→u, →v⟩ ≥ ∥→u∥∥→v∥

Proof: by positivity and linearity, 0 ≤ ⟨→u − x→v, →u − x→v⟩ = ∥→u∥2 − 2x⟨→u, →v⟩+ x2∥→v∥2. Choosing

x =
⟨→u, →v⟩

∥ →v∥2
 simplifies to ⟨→u, →v⟩2 ≤ ∥→u∥∥→v∥, which alternatively states Cauchy-Schwarz.

By Cauchy-Schwarz, 
⟨→u, →v⟩

∥→u∥∥→v∥
∈ [−1, 1], guaranteeing an α exists for any →u, →v

α is not defined for →u, →v = 0

∥→u∥ cos θ

∥→u∥ sin θ

∥→v∥ cosφ
∥→v∥ sinφ

More succinctly, we have ∥→u ⋅ →v∥ = ∥→u∥∥→v∥ cos θ

Aside: just like we define an angle using the dot product, so too can we define other "types of
angle" with other inner products.
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We can use Cauchy-Schwarz to define optimization problems by reinterpreting the equation whose
parameter we want to optimize as an (instance of an) inner product, using Cauchy-Schwarz to define
bounds, then using Cauchy-Schwarz refinement to find an expression based on the bound(s).

E.g. the standard basis is an orthogonal basis

We define coordinate vector of vector →v in basis β as [→v]β =  where 
n

∑
i=1

ci→bi = →v

In an orthogonal basis, we have ci =
⟨→vi,→bi⟩

⟨→bi,→bi⟩

⎡⎢⎣c1

⋮
cn

⎤⎥⎦Proof: follows from the definition of an orthogonal basis

"Orthogonal Decomposition Theorem"

Let V  be an inner product space with dimension n; let →v1, … , →vn be orthogonal, so any pairwise
⟨ →ui, →vi⟩ = 0. Then ( →v1, … , →vn) is an orthogonal basis if and only if all →vi ≠ →0

Proof sketch: we wish to show that →v1, … , →vn are linearly independent (make-your-life-easy
theorem does the rest). Let c1 →v1 + ⋯ + cn →vn = →0. Taking the inner product of both sides of the =
yields 0 by (inductive) orthogonality. Any ⟨ →vi, →vi⟩ satisfy ⟨ →vi, →vi⟩ > 0 due to positivity, so we can
divide both sides by it to yield ci = 0. We know that if some →vi = →0, then →v1, … , →vn would not be
linearly independent to begin with.

Cauchy-Schwarz refinement

If ⟨→u, →v⟩ = ∥→u∥∥→v∥ and →v ≠ →0, then →u = a→v for some scalar a ≥ 0, i.e. →u and →v are linearly
dependent.

Proof: ⟨→u, →v⟩ = ∥→u∥∥→v∥ ⟹ ⟨→u − x→v, →u − x→v⟩ = 0 ⟹ →u − x→v = →0 ⟹ →u = x→v

E.g. which polynomial q(x) satisfying = ∫
1

0
(3x − 1)q(x) dx =

1
2

 has the smallest ∫
1

0
q(x)2 dx (i.e.

smallest "size")? We define the inner product ⟨p(x), q(x)⟩ = ∫
1

0
p(x)q(x) dx, and rephrase the first

equation as ⟨3x − 1, q(x)⟩ =
1
2

; by Cauchy-Schwarz, we find the bound 
1
2

≤ ∥3x − 1∥∥q∥.

Evaluating, we find ∥3x − 1∥ = 1, so 
1
2

≤ ∥q∥. By Cauchy-Schwarz refinement, we find that
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The Gram-Schmidt process is used to construct an orthogonal basis from an basis (or even any set
of vectors) in an inner product space.

Lecture 35

q(x) = a(3x − 1) for some a. Finally, we now know 
1
2

= ⟨3x − 1, a(3x − 1)⟩ = a × ∥3x − 1∥2 = a.

So, q(x) =
1
2

(3x − 1).

Find the smallest →v ∈ R3 where⟨(1, 2, 3), →v⟩ = −1 where we use the dot product. From the dot
product definition, we get −1 = ⟨(1, 2, 3), →v⟩ = ∥(1, 2, 3)∥∥→v∥ cos(θ). To minimize →v, we pick the
smallest possible cos(θ), i.e. θ = π. We now know →v = a(1, 2, 3). So,

−1 = ⟨(1, 2, 3), (1, 2, 3)⟩ = a(12 + 22 + 32) = 14a, so →v = −
1
14

(1, 2, 3).

Gram-Schmidt Process

For basis →v1, … , →vn in an inner product space, we can construct a basis →u1, … , →un for
Span( →v1, … , →vn) that is orthogonal in that inner product space. We do this with the following
process:

In general, we have →uk = →vk −
k−1

∑
ℓ=1

⟨ →vk, →uℓ⟩

∥ →uℓ∥2
→uℓ

→u1 = →v1,

→u2 = →v2 −
⟨ →v2, →u1⟩

∥ →u1∥2
→u1,

→u3 = →v3 −
⟨ →v3, →u1⟩

∥→u∥2
→u1 −

⟨ →v3, →u2⟩

∥ →u2∥2
→u2

Etc.

Proof sketch: First, note that ⟨ →u1, →u2⟩ = ⟨ →u1,
→

v2 −
⟨ →v2, →u1⟩

∥ →u1∥2
→u1

⟩ = … bilinearity expansion = 0.

Perform induction on k → …n to show that ⟨ →u1, →uk⟩ = 0. Knowing this, we can perform induction
on j to show that ⟨ →uj, →uk⟩ = 0, showing that all the →u terms are orthogonal.
Proof: Lecture 34 Slides

E.g. In the inner product space of polynomials with ⟨p(x), q(x)⟩ = ∫
1

0
p(x)q(x) dx, an orthogonal

basis for (1,x,x2) (which interestingly is not orthogonal here) is (1,x − 1
2 ,x2 − x + 1

6 )



If we perform the Gram-Schmidt process on linearly dependent →v1, … , →vn, then at least one →u will be →0.

Application: the least-squares solution for system of equations A→x = →b is the →̂x that minimizes the
error, namely ∥A→̂x − →b∥. If this system is consistent, then A→x is in the column space of A, and a "full"
solution exists. When it's not consistent (i.e. in almost every practical application), A→̂x = →b must be
orthogonal to the column space, why???, i.e. to all the columns of A. So, the least squares solution is
any solution to A⊤(A→̂x − →b) = →0 ⟹ A⊤A→̂x = A⊤→b.


